

The Kelkar Education Trust's Vinayak Ganesh Vaze College of Arts, Science & Commerce AUTONOMOUS

Mithaghar Road, Mulund East, Mumbai-400081, India College with Potential for Excellence Phones :022-21631421, 221631423, 221631004 Fax : 022-221634262, e mail : vazecollege@gmail.com

Syllabus for M. Sc. Part-1 Programme:

Zoology

Syllabus as per Choice Based Credit System (NEP-2020)

(June 2023 Onwards)

Submitted by

Department of Zoology Vinayak Ganesh Vaze College of Arts, Science and Commerce Mithagar Road, Mulund (East) Mumbai-400081. Maharashtra, India. Tel: 022-21631004, Fax: 022-21634262 E-mail: vazecollege@gmail.com Website : www.vazecollege.net

The Kelkar Education Trust's Vinayak Ganesh Vaze College of Arts, Science & Commerce (AUTONOMOUS)

Syllabus as per Choice Based Credit System (NEP 2020)

Syllabus for Approval

Sr. No.	Heading	Particulars
1	Title of Programme	M. Sc. Zoology Semester I and II
2	Eligibility for Admission	The B.Sc. degree examination of this university with chemistry 6 units or 3 units or degree of any other universities recognized as equivalent thereto.
3	Passing marks	Minimum D Grade or equivalent minimum marks for passing at the Graduation level.
4	Ordinances/Regulations (if any)	
5	No. of Years/Semesters	One year/Two semester
6	Level	P.G. part - I : Level-6
7	Pattern	Semester
8	Status	Revised
9	To be implemented from Academic year	2023 - 2024

Date:

Signature:

BOS Chairperson: Dr. Vinod R. Ragade

•••••

Post Graduate Programs in Zoology

Year (2 Yr PG)	Level	Sem. (2 Yr)	Major		RM	OJT /FP	RP	Cum. Cr.	Degree
/			Mandatory*	Electives Anyone					
1	6.0	Sem-1	For Animal physiology and Oceanography Specialization Course 1 Credits 4 : Non- chordates Course 2 Credits 4 : Developmental biology-I Course 3 Credits 4 : Genetics and Evolution Course 4 Credits 2 : Practicals (Non-chordates +	Credits 4 (2+2) Course 1 : Frontiers in Zoology and Practicals : Zoology I OR Course 2: Forensic Science and	4			22	PG Diplom a (after 3 Year Degree)
		Sem- II	Developmental biology I) For Animal physiology and Oceanography	Environmental Biotechnology Practicals : Zoology I					-
			Specialization Course 1 Credits 4: Chordates Course 2 Credits 4: Developmental biology-II Course 3 Credits 4: Biochemistry and Biotechnology Course 4 Credits 2: Practicals (Chordates + Developmental biology II)	Credits 4 (2+2) Course 1 : Instrumentation & Biophysics and Practicals : Zoology II OR Course 2: Diversity of life forms & applied zoology and Practicals : Zoology II		04		22	
	Cr. for P	G	28	8	4	4		44	
Diplon									
Exit of	ption: PC	J Diplom	a (44 Credits) after Thre	e Year UG Degree					

Proposed Draft Syllabus for M.Sc. Zoology Semester I and II Choice Based Credit System (NEP 2020)

(To be implemented from the academic year, 2023-2024)

Semester – I Paper I - Non-Chordates Course Code: VGVPSMZO101 Credits: 4

Unit	Content	Lecture
	Digestion and Excretion	
	I. General organization of digestive systems of Protostomes (Annelids, Arthropods	
	and Molluscs) and Deuterostomes (Echinoderms and Hemichordates)	
	II. Digestive Systems with Special emphasis on the organs or glands of :	
	i. Annelids - Clamworm – Denticles or Paragnaths, Jaws	
	ii. Arthropods - Prawn: Buccal cavity, Cardiac and Pyloric stomach, Hepatopancreas	
	iii. Mollusca - Pila: Odontophore, Sub-radular organ, Radula, Oesophageal pouches,	
	Cardiac and Pyloric chambers, Salivary gland, Hepatopancreas	
	iv. Echinoderms - Starfish: Cardiac and Pyloric stomach, Intestinal Caeca, Digestive	
	glands	
	v. Hemichordates - Balanoglossus: Buccal Diverticulum, Digestive Pharynx, Post-	
Unit I	branchial canal, Hepatic and posthepatic regions	15 Hrs
	III. General organization of excretory systems of Protostomes (Annelids,	
	Arthropods and Molluscs) and Deuterostomes (Echinoderms and	
	Hemichordates)	
	IV. Excretory Systems with special emphasis on the organs or glands of:	
	i. Annelids Clam worm: Coiled Nephridia	
	ii. Arthropods Prawn: Antennal glands or Green glands or Maxillary glands, Bladder,	
	Renal sac	
	iii. Molluscs Pila: Organ of Bojanus, anterior Renal chamber, posterior Renal	
	chamber	
	iv. Echinoderms Starfish: Water Vascular System, Coelomocytes, Intestinal caeca	
	v. Hemichordates Balanoglossus: Glomerulus or Proboscis gland	

	Respiration and Circulation	
	I. General organization of respiratory systems of Protostomes (Annelids,	
	Arthropods and Molluscs) and Deuterostomes (Echinoderms and	
	Hemichordates)	
	II. Respiratory Systems with Special emphasis on the organs/structures or glands	
	of:	
	i. Annelids - Clam worm: Parapodia, Body wall	
	ii. Arthropods - Prawn: Branchiostegites, Branchiae, Epipodite	
	iii. Molluscs - Pila: Ctenidium, Pulmonary sac	
	iv. Echinoderms - Starfish: Dermal papulae, Tube Feet	
Unit II	v. Hemichordates - Balanoglossus: Gill slits, Branchial sac, Gill pores	15 Hrs
	III. General organization of circulatory systems of Protostomes (Annelids,	
	Arthropods and Molluscs) and Deuterostomes (Echinoderms and	
	Hemichordates)	
	IV. Circulatory systems with special emphasis on the organs/ structures or glands	
	of:	
	i. Annelids - Clam worm: Dorsal blood vessel, Ventral blood vessel, Transverse vessels	
	ii. Arthropods - Prawn: Heart and Blood lacunae	
	iii. Molluscs - Pila: Pericardium, Heart	
	iv. Echinoderms - Starfish: Perihaemal sinuses, Axial gland	
	v. Hemichordates - Balanoglossus: Central Sinus (Heart), Dorsal vessel, Ventral vessel	
	Nervous System, Chemical Coordination and Reproductive System	
	I. General organization of Nervous systems & Chemical Coordination in	
	Protostomes (Annelids, Arthropods and Molluscs) and Deuterostomes	
	(Echinoderms and Hemichordates)	
	II. Nervous system & Chemical Co-ordination with special emphasis on the	
	organs/structures or glands of:	
	i. Annelids - Clam worm: Corpora pedunculata , Giant fiber, Circumpharyngeal	
Unit III	ganglion, Peristomial cirri, Nuchal organ, pigmented Retinal cells	15 Hrs
	ii. Arthropods - Prawn: Brain, Circum-oesophageal commissure, Compound eyes,	10 1115
	Chromatophore, Statocysts, Tactile setae, Olfactory setae, Tangoreceptors,	
	Chemoreceptors, Proprioceptors, Sinus gland X organ complex, Y organ	
	iii. Molluscs - Pila: Cerebral Ganglia, Buccal Ganglia, Pleuro-pedal Ganglionic Mass,	
	Supra Intestinal Ganglion, Visceral Ganglion, Osphradium, Tentacles, Statocysts,	
	Eyes, Mechanoreceptors, Photoreceptors, Temperature receptors, Chemoreceptors	
	iv. Echinoderms - Starfish: Ectoneural nervous system, Langer's nerve, Eyes,	
	Terminal tentacles, Neurosecretory cells	

	v. Hemichordates - Balanoglossus: Epidermal Plexus, Preoral ciliary organ,	
	Neurosecretory cells	
	III. General organization of reproductive systems in Protostomes (Annelids,	
	Arthropods and Molluscs) and Deuterostomes (Echinoderms and	
	Hemichordates)	
	IV. Reproductive systems with special emphasis on the organs/structures or	
	glands in:	
	i. Annelids - Clam worm: Gonads – Testes and Ovaries (Temporary)	
	ii. Arthropods - Prawn: Male – Testes, Vasa deferentia, Vesicula Seminalis; Female –	
	Ovaries, Oviducts	
	iii. Molluscs - Pila: Male – Testes, Vasa efferentia, Vasa deferens, Vesicula seminalis,	
	Hypobranchial glands; Female - Ovary, Oviduct, Receptaculum seminis, Uterus,	
	Vagina, Hypobranchial gland	
	iv. Echinoderms - Starfish: Male / Female gonads	
	v. Hemichordates - Balanoglossus: Saccular gonads	
	Paleontology and Phylogeny	
	I. Fossils of:	
	i. Annelids: Serpula and Glomerula spp. found in South India	
	ii. Arthropods: Trilobites found in Kashmir, Insects trapped in amber found in	
	Western India	
	iii. Molluscs: Molluscs fossils found in Kutchh, Chhattisgarh and Jammu -	
	Palmerella kutchensis, Cimomia forbesi, Lamellidens	
	iv. Echinodermata: Gongrochanus spp. found in South India, Echnoid fossils	
	found in India.	
	v. Hemichordata: Graptolite fossils	
Unit IV	II. Phylogenetic affinities of Annelida, Arthropoda, Mollusca, Echinodermata	15 Hrs
Umt I v	and Hemichordata	15 118
	i. Phylogenetic relationships of Trochophore larva	
	ii. Similarities and differences between Annelids and Molluscs	
	iii. Phylogeny of Arthropods – Monophyletic theory and polyphyletic theory	
	iv. Phylogeny of Echinoderms - Asterozoan hypothesis and Cryptosyringid	
	hypothesis	
	v. Affinities of Annelida with Hemichordata	
	vi. Affinities of Echinodermata with Hemichordata	
	III. Construction of Phylogenetic Tree	
	i. Genetic distance	
	ii. Rooting trees	

IV. Phylogenetic Tree Building Methods	
i. Distance-Based Methods: UPGMA Method, Neighbour Joining Method (NJ),	
Weighted Neighbour Joining (Weighbour), Fitch-Margoliash (FM) and Minimum	
Evolution (ME) Methods	
ii. Character-based Methods: Maximum parsimony (MP), Maximum Likelihood	
(ML)	
Total No. of Lectures	60

1

References based on Course 1 - Non chordates (VGVPSMZO101)

References based on Course 1 - Non chordates (VGVI SIVIZO101)
1. Invertebrates – Protozoa to Echinodermata, Author: Ashok Verma, Publisher- Narosa Publishing House.
2. Invertebrate Zoology, Authors: E. L Jordan and P. S. Verma, Publisher: S. Chand and Company Ltd.
3. Invertebrate Zoology 3rd edition, Author: Paul A. Meglitsch and Fredrick R. Schram, Publisher – Oxford
University Press.
4. Introduction to General Zoology Vol. I, Author: Korak Kanti Chaki, Gautam Kundu and Supriti Sarkar,
New Central Book Agency (P) Ltd.
5. Introduction to General Zoology Vol. II, Author: Korak Kanti Chaki, Gautam Kundu and Supriti Sarkar,
New Central Book Agency (P) Ltd.
6. Modern Text Book of Zoology: Invertebrates, Author: R. L. Kotpal.
7. Invertebrate Zoology by N.C Nair, S. Leelavathy, et al.
8. Textbook of Zoology: Invertebrates Vol I 7/e by Haswell.
9. Textbook of Invertebrate Zoology by Dev Bhattacharya.
10.Invertebrates by Richard C. Brusca, Wendy Moore, Stephen M. Shuster.
11.Invertebrate Zoology: A Functional Evolutionary Approach, Authors: Richard Fox, Robert D. Barnes,
Edward E. Ruppert.
12.An Introduction to Mollusca by G. S. Sandhu and Harshvardhan Bhaskar, Campus Book International.
13.An Introduction to Echinodermata by G. S. Sandhu and Harshvardhan Bhaskar, Campus Book
International.
14.Principles of Invertebrate Paleontology by N. Shrock.
15.Palaeontology Invertebrate by Henry Woods.
16.Phylogenetic Trees Made Easy: A How-to Manual by Barry G. Hall.
17.Invertebrate Zoology by P. S. Dhami and J. K. Dhami.
18.Practical Zoology by K. C. Ghose

19. Practical Zoology – Invertebrate by S. S. Lal.

Semester – I Paper II - Developmental Biology - I Course Code: VGVPSMZO102 Credits: 4

Unit	Content	Lecture	
	Fertilization and Early Development in Non-chordates		
	I. Concept and Mechanism of Fertilization		
	i. Types of reproduction – Asexual and sexual		
	ii. Fertilization – Concept and types		
	iii. Mechanism of fertilization - Capacitation of sperm - Recognition of sperm and egg		
	- Acrosome reaction - Activation of egg - Fusion of egg and sperm cell membrane -		
	Amphimixis		
	II. Molecular Events of Fertilization		
Unit I	i. Species specific recognition of gametes - Fertilizin and antifertilizin interaction,	15 Hrs	
	Binding protein		
	ii. Prevention of polyspermy – Fast and slow block		
	iii. Calcium as initiator of cortical granule reaction		
	iv. Activation of egg metabolism with respect to Sea urchin		
	III. Formation of Germ Layers and Coelom Formation		
	i. Post Fertilization events: Overall view of Cleavage, Blastulation, Gastrulation		
	ii. Formation of Germ layers – Diploblastic, Triploblastic		
	iii. Coelom formation in Protostomes and Deuterostomes		
	Basic concepts of embryonic development in non-chordates		
	I. Fate map and cell lineages: potency and commitment		
	II. Competence and induction		
Unit II	III. Mosaic and regulative development	15 Hrs	
Unit II	IV. Cell specification:	15 Hrs	
	i. Autonomous specification		
	ii. Conditional specification		
	iii. Syncytial specification		
Unit III	Early Development in non-chordates		
	I. Development of Caenorhabditis elegans		
	i. Pattern of cleavage	15 Hrs	
	ii. Anterior-posterior axis formation	13 1118	
	iii. Dorsal-Ventral axis formation		
	iv. Cell specification (Autonomous and Conditional)		

	v. Process of gastrulation	
	II. Early Development in Drosophila melanogaster:	
	i. Pattern of cleavage	
	ii. Blastulation	
	iii. Process of gastrulation	
	iv. Anterior-posterior pattern formation by morphogenetic protein gradient	
	v. Dorsal-ventral pattern formation by morphogenetic protein gradient	
	vi. Patterns of homeotic gene expression: Homeo selector gene complexes (Hom-C,	
	homeotic gene complex) – Antennapedia and bithorax complexes and their functional	
	domains, Realistor genes: distal less and wingless genes.	
	Special Aspects in Reproduction and Development in non-chordates	
	I. Sexual Reproduction in Protozoa - Conjugation in Paramoecium sp	
	Syngamy in flagellates	
	II. Metagenesis in Obelia sp.	
	III. Polyembryony in Fasciola sp.	
	IV. Regeneration in Hydra (Morphallactic) and Planaria (Totipotency)	
	V. Parthenogenesis in Aphids	
Unit IV	VI. Metamorphosis in insects – Indirect Development	15 Hrs
Unitiv	i. Types of insect metamorphosis	15 1115
	ii. Eversion and differentiation of imaginal disc	
	iii. Hormonal control of insect metamorphosis	
	iv. Study of life cycle of Blow fly-applications in forensics	
	v. Larval forms of non-chordates: Amphiblastula larva (Porifera), Planula	
	(Coelenterata), Echinopluteus (Echinodermata) and Tornaria (Hemichordata) VII.	
	Pheromones in invertebrates and their role as sex attractants and in	
	Integrated Pest Management (IPM)	
	Total No. of Lectures	60

References based on Course 2 - Developmental biology - I (VGVPSMZOP102)

 $1. \ Developmental \ Biology-Scott \ F. \ Gilbert-8 th \ Edition, \ Sinauer \ Associates \ Inc., \ 2006$

2. Principles of Development – L. Wolpert – 4th Edition, Oxford University Press, 2011.

3. Essential Developmental Biology- J.M.W. Slack – 2nd Edition, Blackwell Publishing, 2006

4. Modern Text Book of Zoology- Invertebrates by R.L. Kotpal, Rastogi Pub, 10th Edn, 2013.

5. An Introduction to Embryology by B. I. Balinsky, CBS College Pub, 5th Edn, 1981.

6. Biology of the Invertebrates by Jan A. Pechenik, Tata McGraw-Hill, 4thEdn, 2000.

7. Invertebrate Zoology by P. S. Dhami and J. K. Dhami, R. Chand and Co.3rd Rev.Edn,1974

8. General and Applied Entomology by B. V. David and T. N. Ananthakrishnan, Tata McGraw-Hill, 2nd Edn, 2004.

9. Modern Entomology by D. B. Tembhare, Himalaya Publishing House,1st Edn,1997

Semester – I Paper III - Genetics and Evolution Course Code: VGVPSMZO103 Credits: 4

Unit	Content	Lecture
	Introduction to evolutionary genetics	
	I. Cytochrome 'c'	
	i. Structure of Cytochrome 'c' and couple cytochrome 'c'	
	ii. Cytochrome 'c' in eukaryotes. Example Primates	
	iii. Cox gene 1.1.4 Molecular basis of haemoglobin gene structure. Haemoglobin	
	as a model of evolution	
	II. Sex Determination and Evolution of Sex Chromosome	
	i. Theory of evolution of sex chromosome	
	ii. Evolution of sex chromosomes from autosomes	
	iii. Biology of Y chromosome	
T] ! 4 T	iv. Molecular level of sex determination in mammals	15 II
Unit I	v. Sex based gene expression	15 Hrs
	vi. T6sRNA	
	 III. Cytoplasmic Inheritance/Extra-nuclear Inheritance i. Introduction – human mitochondrial genetics ii. Paternal and maternal mtDNA inheritance in humans 	
	iii. mtDNA mutations and human diseases	
	iv. Salient feature of cytoplasmic inheritance	
	IV. Selfish Gene	
	i. Introduction and definition	
	ii. Individual altruism and genetic egoism	
	iii. Green beard effect	
	Molecular Genetics	
	I. Gene Library	
	i. Molecular analysis of gene and gene products	
Unit II	ii. Types – Genomic Library, cDNA Library	
	iii. Construction of genomic library – human antibody gene library	15 Hrs
	iv. Applications of gene library	
	II. Types of Genes:	
	Definition – Multigenes, Repeated genes, Single copy gene, House-keeping gene	
	(constitutive gene), Luxury gene (non-constitutive gene), Pseudogene, Jumping gene	

	(Transposons), Overlapping gene, Structural gene, Processed gene, Split gene ,	
	Regulatory gene	
	i. Multi-gene Families and Types:	
	a) Split Genes or Interrupted genes - Introduction, Structure of split genes,	
	Discovery and theory of split genes, Evolution of split genes	
	b) Pseudogenes	
	c) Selfish gene	
	ii. Overlapping Gene	
	III. Mapping units	
	i. Types –genetic mapping and physical mapping	
	ii. Detection of linkages	
	iii. Construction of linkage maps in diploids and their characteristics	
	iv. Coefficient of coincidence	
	v. Outline of other types of gene mapping	
	IV. Gene cloning	
	i. Definition and strategies of gene cloning	
	ii. Techniques in gene cloning	
	iii. Applications of gene cloning in DNA analysis in research	
	V. Population genetics	
	i. Population genetics in DNA typing	
	ii. Mutation – Selection balance	
	iii. Parallelism between random drift and inbreeding	
	Evolution – Anthropology	
	I. Racial distribution of Primates and Homo sapiens	
	i. Racial distribution of primates - Distribution of Prosimians	
	(Lemurs, Lorises, Galagos), Distribution of Anthropoids	
	(Monkeys and Apes)	
	ii. Divergence of Homo sapiens from Anthropoid	
	II. Racial distribution of Homo sapiens	
Unit III	i. Biological races in humans - Caucasoid (White) race, Negroid (Black) race,	15 Hrs
	Capoid (Bushmen/Hottentots) race, Mongoloid (Oriental /Amerindian) race,	
	Australoid (Australian Aborigine and Papuan) race	
	ii. Human genetic diversity protein-based polymorphism	
	(Blood groups, Alu polymorphism), craniometrics	
	III. Importance of Human Genetic Biodiversity	
	i. Applications – Anthropological, Medical, Cultural	
	ii. Parasites and human co-evolution	

	Total No. of Lectures	60
	iii. Current status of frozen zoo	
	transfer, mixing cells, creating sperms and eggs	
	ii. Techniques to create offspring from cells of endangered species, nuclear	
	i. Concept of frozen zoo to save endangered species	
	III. Frozen zoo	
	v. Process of C-14 Carbon dating	
	iv. Fossil dating – Types: Absolute and Relative Dating	
	iii. Significance of fossils and fossilization	
	ii. Major events in evolutionary time scale	
Unit IV	i. Geological time scale – Eras, Periods and Epochs	15 Hrs
	II. Fossil dating	
	iv. Concept of neutral evolution, molecular divergence and molecular clock	
	spp., Neanderthal, Cromagnon and Modern man	
	spp., Ramapithecus spp., Australopithecus spp., Kenyanthropus spp., Homo	
	iii. Brief Accounts of Parapithecus spp., Propliopithecus spp., Dryopithecus	
	ii. Genomics and humanness; current issues in human evolution	
	i. Human evolutionary history and placing humans on tree of life	
	I. Human evolution	
	Evolution & Fossils	
	Leopon, Zorse	
	iv. Artificial cells in hybrids to create - Dzo, Mule, Hinny, Liger, Wholpin,	
	iii. Artificial Hybrids – Hybrid optimization – Bee Colony	
	ii. Hybrid Speciation	
	Fish, Frog, Lizard	
	i. Natural Hybrids - Origin and evolution of animal hybrids, Insects, Snails,	
	V. Hybrid Evolution	
	iv. Domestication and behavioral changes	
	iii. Group selection and kin selection	
	ii. Altruism and evolution in domesticated wild animals	
	human	
	i. Altruism – Intraspecies and Interspecies, Cooperation and its evolution in	
	IV. Altruism and Evolution	
	Sickle cell Individuals as an example of coevolution with malarial parasite)	
	iv. Endoparasites co-evolution with humans (Liver fluke, Tapeworm, Ascaris,	
	iii. Ectoparasites co-evolution with humans (Head Louse, Scabies, Mite)	

References based on Course 3 - Genetics and Evolution (VGVPSMZO103)

- 1. Morphology of the primates and human evolution R.P Srivastava.
- 2. Animal behavior by S. Prasad.
- 3. Text of Animal Behaviour by H.S Gundevia.
- 4. Animal behavior Saras publication Kenneth Oakley, Title of book.
- 5. Fossil in Earth Sciences by Anis kumar Ray.
- 6. Evolution Donal R. Prothero.
- 7. Principals of paleontology David M. Raup, Stanley.
- 8. Fossil Records, John Morris.
- 9. General genetics by Winchester.
- 10. Molecular Biology of gene by Watson et al. Vol I & II.
- 11.Genetics by Strickberger.
- 12. Molecular Biology by Friefielder.
- 13.Genetics by P.K. Gupta.
- 14. Molecular cell biology by Darnell, Lodish and Baltimore (Scientific American books).
- 15.Evolution by Savage.
- 16.Process of organic evolution by Stebbings.
- 17. Evolution of vertebrates by Colbert Concepts of Genetics, 9th edition (2008), William S. Klug, Michael
- R. Cummings, Charlotte Spencer, and Michael A. Palladino, Publisher Benjamin Cummings.
- 18. Genes IX, 9th edition (2008), Benjamin Lewin, Publisher-Jones and Barlett Publishers Inc.
- 19.Principles of Genetics, 4th edition, (2006), Snustad D. Peter and Simmons J. Micheal, Publisher -John Wiley and Sons. Inc.
- 20.Genetics, (1999), Daniel J. Fairbanks, W. Ralph Andersen Publisher- Brooks/Cole Pub Co.
- 21.Principles of Genetics, 8th edition (1991), Eldon J. Gardner, D.P. Snustad, M.J. Simmons, and D. Peter Snustad Publisher-John Wiley and Sons. Inc.
- 22. Microbial Genetics, (1987), David Freifelder, Publisher-Jones & Bartlett.
- 23.General Genetics, (1985), Leon A. Snyder, David Freifelder, Daniel L. Hartl PublisherJones and Bartlett.
- 24. Genetics, 3rd edition, Monroe W. Strickberger, (1968), Publisher Macmillan Publishing Co.

Semester – I Practicals Course Code: VGVPSMZOP101 Credits: 2

Sr No.	List of Experiments				
	A. Study of Fossils:				
	a. Annelids: Serpula and Glomerula spp.				
	b. Arthropods: Trilobites, Insects trapped in amber				
1	c. Molluscs: Palmerella kutchensis, Cimomia forbesi, Lamellidens				
	B. Study of Fossils:				
	d. Echinodermata: Gongrochanus spp., Goniocidaris				
	e. Hemichordata: Graptolite fossils				
2	Construction of a phylogenetic tree.				
3	Making of fossil casts with Shaadu Clay / Muddy soil				
4	Field visit to observe invertebrates in their natural habitat and accordingly the modifications of				
4	various systems.				
5	Field visit to study fossils to places such as museums, Institutions, quarries, archeological sites				
3	etc.				
6	To culture Paramecium to study conjugation and binary fission under the microscope.				
7	To observe development of <i>C. elegans</i>				
8	To culture <i>Drosophila</i> to study its life cycle.				
9	To observe stages of Tribolium or Sitophilus to understand indirect development in				
,	animals.				
	To study germ layers:				
	i. Diploblastic – T.S. of body wall of sponges and cnidarians (coelenterates)				
10	ii. Triploblastic acoelomate – T.S. of body wall of Platyhelminthes				
	ii. Triploblastic pesudocoelomate- T.S. of body wall of Ascaris				
	iv. Triploblastic coelomate -T. S. of body wall of earthworm				
11	To study gemmule formation in a sponge.				
	To study larvae of non-chordates:				
12	i. Porifera – Amphiblastula, ii. Cnidaria (Coelenterata) – Planula, iii. Annelida and Molluscs–				
14	Trochophore, iv. Mollusca – Glochidium, v. Crustacea – Nauplius, Zoea, Mysis, Megalopa				
	vi. Echinodermata – Auricularia, Echinopluteus , vii. Hemichordata – Tornaria				
13	To study Life cycle of Butterfly / Moth (Insecta).				

14	To Isolate DNA from the given blood sample.
15	To study the Kappa particles in <i>Paramecium</i> cultured in laboratory
16	To study the maternal effects in <i>Drosophila</i> due to induced environmental changes.
17	Study of syndromes – Cockeye syndrome (CS), Proteus syndrome, Muenke syndrome
18	Problems on gene mapping and mitotic index

Semester I OE: Frontiers in Zoology Course Code: VGVPSELZO101 Credits: 4

Unit	Content	Lecture
Unit I	 Frontiers In Zoology Astrobiology And Chronobiology I. General aspects of Astrobiology, Status of Research in Astrobiology and Future perspectives, factors determining habitability on planets; extremophiles II. Biosignatures of life in exoplanet atmosphere III. Search for life on Mars; search for extraterrestrial intelligence IV. Introduction to Chronobiology - Definition and meaning V. Biological rhythms i) Introduction ii) Types - Circadian rhythms, Tidal rhythms, Lunar rhythms, Semilunar rhythms, Circannual rhythms VI. Structure of Biological Clock in Insects and Vertebrates; Biological Clock function VII. Relevance of Biological Clocks for Human Welfare ii) Chronomedicine ii) Chronotherapy VIII. Molecular mechanisms controlling the circadian rhythm (Noble Prize winning work, 2017) 	15 Hrs
Unit II	 Modern Techniques In Medical Field Physical Aspects Of Medical Imaging Laser beam in Biology and Medical Field Medical lasers (Carbon Dioxide Laser, Nd: YAG Laser) Medical lasers (Carbon Dioxide Laser, Nd: YAG Laser) Applications of lasers in therapy and diagnosis. Principle and applications of major medical imaging techniques Radiography Echocardiography (2D and 3D Echo) Computed Tomography Scan (CT Scan) Magnetic Resonance Imaging (MRI) II. Radioisotope Imaging: Introduction and applications IV. DNA barcoding technique and its applications V. Molecular Cytogenetic Techniques and their Applications Fluorescence <i>in-situ</i> Hybridization (FISH) Genomic in-situ Hybridization (GISH) Flow Cytometry Automated karyotyping Chromosome painting 	15 Hrs
Unit III	 Biological Psychology And Neurobiology Of Stress And Emotion Introduction and general features of emotions Neuronal basis of emotion Types of emotions: Definition and management- Fear, Frustration, Joy/ Happiness, Sadness, Embarrassment, Guilt, Shame, Anger, Love, Inspiration IV. Measurement of emotions: Self-report, Behavioral observations, Physiological measure 	15 Hrs

	V. VI. VII. VIII.	Role of brain regions in emotions: Limbic system, Amygdala, Cortex, Hypothalamus, Midbrain Periaqueductal Grey, Neurochemicals involved in emotions Concept of Stress, Measurement of stress, Characterizing stress: Signs of stress, Types of stressors Stress and the Hypothalamus: Pituitary- Adrenal Axis (HPA Axis) Remedial measures to combat psychological stress and negative emotions	
	Clima I.	tic Change And Sustainability Climatic Change i) Introduction ii) Indicator species of climate change	
	II.	 iii) Vulnerability and adaptations Greenhouse effect i) Greenhouse gases ii) Increase in greenhouse gas concentrations iii) Global warming potential of greenhouse gases 	
	III.	Intergovernmental Panel on Climate Change [IPCC]: Objectives and functioning	
Unit IV	IV.	 United Nations Framework Convention on Climate Change (UNFCCC) Salient Features and Objectives i) Kyoto protocol ii) Doha Amendment iii) Emission trading / Carbon Trading 	15 Hrs
	V.	 i) Introduction and goals ii) Sustainable habitat - Green building, Griha rating norms 	
	VI.	Green Audit: Introduction and Types - Energy audit, Waste disposal audit, Water audit, Carbon audit	
	VII. VIII.	Impact of climatic change on terrestrial and aquatic organisms	
		Total No. of Lectures	60

References based on OE - Frontiers in Zoology (VGVPSELZO101)

- 1. Animal Behaviour (Ethology) by Dr. V. K. Agarwal, S. Chand and Company Ltd. New Delhi.
- 2. Chronobiology Biological Timekeeping: Jay. C. Dunlap, Jennifer. J. Loros, Patricia J. De Coursey (ed). 2004, Sinauer Associates, Inc. Publishers, Sunderland, MA, USA.
- 3. Insect Clocks, by D.S. Saunders, C.G.H. Steel, X., afopoulou (ed.) R.D. Lewis. (3rd Ed) 2002 Barens and Noble Inc. New York, USA.
- 4. Biological Rhythms: Vinod Kumar (ed.2002) Narosa Publishing House, Delhi/ SpringerVerlag, Germany.
- 5. Molecular mechanisms controlling the circadian rhythm by Michael Rosbash, Michael W. Young & Jeffrey C. Hall, (Nobel Prize winner 2017).
- 6. Principles and techniques of practical biochemistry Ed. B. L. Williams and amp; K. Wilson, Arnold Publishers.
- 7. Medical Imaging Physics by W. R. Hendee, E.R. Ritenour, Wiley-Liss, 2002.
- 8. An Introduction to The Principles of Medical Imaging, Guy, D. ffytche, Imperial College Press, 2008.

- 9. Medical Instrumentation applications and design by John G. Webster.
- 10. Biomedical Instrumentation Technology and applications by Khandpur. McGraw Hill.
- 11. Biomedical Instrumentation systems by Shakti Chatterjee.
- 12. HandBook of Bio-Medical Instrumentation by R. S. Khandpur, McGraw Hill Publishing Co. Ltd. 2003.
- 13. Biomedical Instrumentation and Measurements Leslie Cromwell, Fred J. Weibell, Erich A. Pfeiffer, Pearson Education.
- 14. Bio-Medical Instrumentation by M. Arumugam, Anuradha Agencies
- 15. Lasers and Optical Fibers in Medicine by Katzir A.: Academic Press, Inc. 1993.
- 16. Techniques in life science by Tembhare.
- 17. Biological Psychology 3rd edition, by Frederick Toates, Prentice Hall, Pearson Education Limited.
- 18. Biological Psychology,10th Edition, James V. Kalat, North Carolina State University, 2009, 2007 Wadsworth, Cengage Learning.
- 19. Introduction to Psychology, 9th edition, James Kalat North Carolina State University,
- 20. Wadsworth, Cengage Learning. 20. Neurobiology Gorden M. Sheperd.
- 21. Principles of Neural Science E. Kandel and others.
- 22. Essentials of Neural Science and Behaviour E. Kandel and others.
- 23. Elements of Molecular Neurobiology C U M Smith.
- 24. Fundamentals of Ecology and Environment, Second edition by Pranav Kumar and Usha Mina, Pathfinder Publication New Delhi, India.
- 25. Elements of Ecology by Smith TM and Smith RL (2009), 7th ed. San Francisco CA: Pearson Benjamin Cummings.

Semester I OE: Forensic Science and Environmental Biotechnology Course Code: VGVPSELZO102

Unit	Content	Lecture
Unit I	 Forensic Science and Environmental Biotechnology Forensic Science I. Forensic Entomology: Basics of forensic entomology. Different Insects of forensic importance. Collection of entomological evidence during death investigations. II. Forensic Serology: Nature and importance of biological evidence. Composition and Functions of Blood and Semen. Types and identification of microbial organisms of forensic significance. Examinations of Biological Evidence: Identification of Blood, Semen, Saliva and Urine through preliminary and confirmatory crystal examinations.	15 Hrs
	 III. Forensic Toxicology: Toxicological analysis and chemical intoxication tests, Postmortem Interval, Clinical toxicology, Dose-response relationship, Lethal dose 50, Lethal concentration 50 and Effective dose 50. Collection and preservation of viscera, blood and urine for various poison cases Identification and Analysis of Biocides and Heavy metals in body fluids 	
Unit II	Methods In Field ZoologyI.Methods of estimating population density of animals, ranging through direct, indirect and remote observationsII.Sampling methods in the study of behavior;III.Different techniques of sampling – simple random sampling, stratified random samplingIV.Ethnozoology and its applicationsV.Habitat characterization: ground and remote sensing methods.VI.Aerial counts and Satellite ImageryVII.Measuring Abundance: Transects and Quadrats for faunal diversityVIII.Underwater and Foreshore Surveying	15 Hrs
Unit III	 Environmental Biotechnology I. Role of environmental biotechnology; Scope for use, Market for environmental biotechnology, modalities and local influences. II. Integrated approach in environmental biotechnology; Immobilisation, Degradation or Monitoring of Pollutants from a Biological Origin, Metabolic Pathways of Particular Relevance to Environmental Biotechnology III. Nanofiltration for water purification IV. Green Nanotechnology – Nanomaterials for resolving environmental problems V. Biofuel- Biodiesel, Biogas, Ethanol production VI. Genetically modified organisms (GMO) and Biosafety: Impact of GMO on the environment 	15 Hrs

	VII. VIII.	Biosensors to detect environmental pollutants Case study: Current advances in Environmental Biotechnology	
Unit IV	Applie I. II. II. V. V. VI. VI. VII.	ed Ecology Environmental pollution and anthropogenic activities; Global warming and Greenhouse gases; Global Climatic change: Causes, consequences and mitigation Eutrophication and Biomagnification Bioremediation: Types, Techniques and its applications Algal bloom and its impact in the environment Xenobiotic; Ecological management in toxicological evaluation. Microplastic biodegradation	15 Hrs
		Total No. of Lectures	60

References Based on OE - Forensic Science And Environmental Biotechnology (VGVPSELZO102)

- 1. R.K. Murray, D.K. Granner, P.A. Mayes and V.W. Rodwell, Harper's Biochemistry, APPLETON & Lange, Norwalk (1993).
- 2. David B. Rivers; Gregory A. Dahlem: The Science of Forensic Entomology, 2nd Edition, September 2002, ISBN: 978-1-119-64061-5.
- 3. Damien Charabidze and Daniel Martín-Vega; From Laboratory Studies to Court Evidence: Challenges in Forensic Entomology, 2021. <u>https://doi.org/10.3390/books978-3-0365-1707-0</u>.
- 4. R. Saferstein, Forensic Science Handbook, Vol. III, Prentice Hall, New Jersey (1993).
- 5. G.T. Duncan and M.I. Tracey, Serology and DNA typing in, Introduction to Forensic Sciences, 2nd Edition, W.G. Eckert (Ed.), CRC Press, Boca Raton (1997).
- 6. Sunshine I; Year book of Toxicology, CRC Press Series, USA.
- 7. Michael J. Deverlanko et al: HandBook of Toxicology CRC Press, USA.
- 8. Robert J. Flanagan, Andrew A. Taylor, Ian D. Watson, Robin Whelpton Fundamentals of Analytical Toxicology, Wiley.
- 9. Rosner B.A., 2011, Fundamentals of Biostatistics, Cengage Learning
- 10. Remote Sensing of the Environment An earth resource perspective: J. R. Jensen; Pearson Education.
- 11. Remote Sensing, Principles and interpretation: Floyd F. Sabins Jr., W.H. Freeman & Company, New York, 2nd Ed., 1987.
- 12. Odum, EP. 1987: Basic ecology, Sounders college publications , Philadelphia.
- 13. Environmental Biotechnology: Alan Scragg
- 14. Environmental Biotechnology: Bimal Bhattachraya and Ritu Banerjee
- 15. Encyclopedia of Bioethics, Stephen G. Post (3rd edition)
- 16. R. M. Atlas and R. Bartha 1998 Microbial Ecology Fundamentals and applications. AddisonWesley Longman, Inc.
- 17. R.MMaier, I.L.Pepper and C.P.Gerba 2010, Environmental Microbiology Academic Press.
- 18. Rastogi & Sani, Microbes and Microbial Technology, 2011, pp 29-57, Molecular Techniques to Assess Microbial Community Structure, Function, and Dynamics in the Environment,
- 19. A K Bej and M H Mahbubani, Applications of the polymerase chain reaction in environmental .Microbiology.Genome Res. 1992 1: 151-159.
- 20. Wastewater engineering: Treatment and reuse. Metcalf and Eddy, Tata McGraw Hill Publishing Co. Ltd. 4th Ed.
- 21. Environmental management. H. V. Jadhav, Vipul Prakashan , 2002
- 22. Environmental microbiology. P. D. Sharma. Alpha Science International 2005 ed.
- 23. Mills, D.H. (1972) An introduction to freshwater Ecology. Liver & Boyd, Edinburg.
- 24. Sawyer, C.N. and McCarty, P.L. and Parkin, G.F. "Chemistry for Environmental Engineers", 4th

Edition, McGraw Hill, New Delhi, 1994

- 25. Environmental Monitoring and Instrumentation, Bucholtz, F., (1997) Optical Society of America, Washington D.C.
- 26. Environmental Sampling Analysis: A Practical Guide, Xeith, L.H., Boca Raton, F.L. (1991), Lewis Publication.
- 27. Climate Change and Biodiversity; By Thomas E. Lovejoy, Lee Jay Hannah Published by Yale University Press, 2006 ISBN 0300119801, 80300119800 418 pages.

Practicals based on Semester I - OE (VGVPSELZOP101)		
Sr. No.	List of Experiments	
1	Determination of concentration of iron as a pollutant from sample / sample solution by – Redox titration or spectrophotometric method.	
2	Detection of heavy metals from given sample: a) Zinc b) Lead c) Copper	
3	Extraction of fluid from evidence collected from crime scenes.	
4	Culturing and maintenance of Carrion flies	
5	Survey method of Quadrat and Line Transect method for Field Study in Zoology	
6	Recycling and purification of waste water effluents	
7	Identification of photographs with respect to chronobiology. a) Structure of biological clock in insects b) Structure of biological clock in vertebrates	
8	Identification of photographs of different imaging techniques	
9	Study of gross anatomical regions of the brain involved in stress and emotion.	
10	Study of animals as indicators for climate change and global warming a) Green turtle b) Birds – Sparrow c) Polar bear d) Coral reef e) Butterflies	
11	Identification of SCUBA Apparatus	
12	Environment Audit report (Green Audit / Review of EIA of a Selected Area)	
13	Visit to nearby barcoding laboratory / imaging center /Visit to Industries and Field work report pertaining to Environmental Biotechnology and Applied Ecology and submission of report	
14	Assignment or report submission on pulse rate after stress.	

Semester I Research Methodology Course Course Code: VGVPSRMZO101 Credits: 4

Unit	Content	Lecture
Unit I	Principles of Scientific Research	15 Hrs
	I. Basic concepts of research	
	i. Definition	
	ii. Characteristics of research (controlled, rigorous, systematic, valid and verifiable,	
	empirical and critical)	
	iii. Objectives of research	
	iv. *Types of research: a) Pure and applied b) Structured and unstructured c)	
	Descriptive, correlational, explanatory, exploratory, historical, comparative and	
	experimental	
	II. Formulating research problem	
	i.Reviewing literature: Using library, computerized searches, evaluating literature	
	ii. Developing a research problem: Importance, sources, considerations, steps,	
	defining a problem, formulate objectives	
	iii. Identifying variables: Introduction, types of variables, measurement scales	
	iv. *Hypothesis: Definition, function, characteristics, types (H0, HA), Principles of	
	hypothesis, framing hypothesis, errors in hypothesis, research question versus	
	research hypothesis, hypothesis versus non-hypothesis research	
	III. Research design	
	i. Definition and purpose	
	ii. Characteristics of good research design	
	iii. Sampling strategy and sampling size determination, eliminating extraneous	
	variables	
	iv. *Types of study design: study designs in quantitative research (cross-sectional,	
	before and after, longitudinal, retrospective, prospective, retrospective-prospective,	
	experimental, non-experimental, quasi-experimental)	
Unit II	Data Management and Analysis	15 Hrs
	I. Methods of data collection	
	i. Primary sources	
	ii. Secondary sources	
	II. Data Classification and Presentation	
	i. *Classification of data (Geographical, Chronological, Qualitative, Quantitative)	

	ii. Tabulation of data (one-way table, two-way table, complex table)	
	iii. Type of charts (Line, Column, Scatter plot, Box plot, Heat Map)	
	III. Concepts of Measurements	
	i. Univariate (standard deviation, variance, quartiles)	
	ii. Bivariate (correlation and regression)	
	iii. Multivariate (ANOVA: one-way, two-way)	
	iv. Level of significance and p-value	
	v. *Normal distribution, Skewness, Kurtosis, Outliers	
	IV. Testing of Hypothesis	
	i. Null hypothesis, Alternative hypothesis	
	ii. Type 1 and Type 2 Errors	
	iii. *Testing of Hypothesis (single population mean, two population means)	
	iv. One-tailed and Two-tailed tests	
	V. *Parametric and Non-parametric tests	
	i. Parametric tests: t test, z test, F test	
	ii. Non-parametric tests: Chi-square test, Mann-Whitney test, Kruskal-Wallis test,	
	Friedman Test, Wilcoxon signed- rank test	
Unit III	Scientific Communication	15 Hrs
	I. Research planning	
	i. *Project Proposal and research funding agencies –Research grants, scholarships and	
	funding (CSIR, DBT, DST, DST- INSPIRE Fellowship, ICMR, INSA, BRNS,	
	MoEFCC, UGC-RFSMS, Fulbright Fellowships for Indian students, Lady Tata	
	Memorial Trust, EPA, Bill and Melinda Gates Foundation, Wellcome Trust, Erasmus	
	Mundus)	
	ii. Use of reference management software (MS Word / Zotero / Mendeley)	
	iii. Scientific writing – Thesis and Dissertation	
	II. *Documentation for approval from Institutional Animal Ethics Committee	
	(IAEC) and Institutional Biosafety Committee (IBSC)	
	i. Documents for registration, renewal and reconstitution of IAEC as per CPCSEA	
	guidelines	
	ii. Proposal layout for permission from IAEC for use of animals in research	
	iii. Proposal layout based on recombinant DNA safety guidelines from IBSC	
	iv. Proposal layout for use of transgenic animals in research	
	III. Publications and Research Journals	
	i. *Types of research journals	
	i. *Types of research journalsii. Impact factors of Journals	

	Total No. of Lectures	60
	models (GEMMs): Knock-In and Knock-out mouse models	
	iii. Transgenic and germ line transgenic mouse models, genetically engineered mouse	
	and Diabetes) and behaviour research	
	ii. *Model for studies on physiology, development, ageing, human diseases (Cancer	
	i. Genomics, advantages and limitations	
	VII. Mus musculus (Mouse)	
	ii. *Insights on embryology, ageing and toxicology	
	i. Genome, advantages and limitations	
	VI. Danio rerio (Zebra fish)	
	therapeutic drug discovery	
	ii. *Model for cytogenetics, development, neuroscience, human diseases and	
	i. Genome, advantages and limitations	
	V. Drosophila melanogaster	
	iii. *Model for studies in toxicology	
	ii. Advantage and limitations	
	i.Genome, epigenetic phenotypic variation	
	IV. Daphnia sp.	
	RNAi	
	ii. *Techniques used for genetic modification, Mutant characterization, discovery of	
	i. Body plan of the worm, genetics, genome, cultivation, advantages and limitations	
	III. Caenorhabditis elegans	
	ii. *Model for studies on regeneration	
	i. Biology and genome	
	II. Earthworm	
	I. Introduction: Concept key features and importance of model organisms	
Unit IV	Model organisms and their applications	15 Hrs
	vii. Process to obtain ISSN and ISBN	
	 v. Understanding "h – index" and "i10 – index" vi. SCOPUS, Google Scholar, Web of Science 	
	peer review process	
	iv. Review process – benefits and drawbacks of single blind, double blind and open	

References based on Research Methodology (VGVPSRMZO101)

- 1. Graduate research A guide for students in Life Sciences. 2nd edition. Robert V. Smith
- Research methods for Biosciences. 3rd edition. Debbie Holmes, Peter Moody, Diana Dine,Laurence Trueman
- 3. Experimental designs for Life Sciences. 4th edition. Graeme D., Ruxton and Nick Colegrave
- 4. Research methodology Step by Step Guide for Beginners. 3rd edition. Ranjit Kumar
- 5. Research methodology Tools and techniques, Bridge Centre 2015
- 6. The practice of statistics in life sciences Brigitte Baldi and David Moore, W. H. Freeman.
- 7. Mahajan's methods in Biostatistics for Medical students and Research Workers Bratati Banerjee, Jaypee Publishers.
- 8. Biostatistics: Basic concepts and methodology Wayne Daniel and Chad Cross, Wiley.
- 9. Statistics for people who (think they) hate statistics Neil J. Salkind, SAGE Publications.
- 10. Discovering Statistics using IBM SPSS Statistics Andy Field, SAGE Publications.
- 11. IBM SPSS Statistics Step by Step Darren George and Paul Mallery, Taylor & Francis.
- 12. Statistics for Ecologists using R and Excel Mark Gardener, Pelagic Publishing.
- 13. Thesis and Dissertation Writing in a Second Language a handbook for supervisors Brian Paltridge and Sue Starfield, Routledge Publishers.
- 14. The process of research writing Steven Krause Eastern Michigan University.
- 15. Animal Use Research IAEC Project Proposal & animal imports Guidelines NCBS Animal Care and Resource Center.
- 16. Academic Writing and Publishing A Practical Handbook James Hartley.
- 17. How to Improve Your Journal and Have Greater Impact James Testa Thomson Reuters.
- Introduction to Genetic Analysis: Griffiths, Wessler, Lewontin, Carroll. WH Freeman Company, New York.
- 19. Biology. E. P. Solomon, L. R. Berg, D. W. Martin, Thompson Brooks/Cole.
- 20. Bier, E. 2005. Drosophila, the Golden Bug, Emerges as a Tool for Human Genetics. Nature Reviews Genetics 6: 9-23.
- 21. https://beckerguides.wustl.edu/authors/hindex
- 22. https://www.elsevier.com/en-in/reviewers/what-is-peer-review
- 23. https://www.thehindu.com/sci-tech/science/what-is-a-predatoryjournal/article21039351.ece
- 24. Fly: http://flybase.bio.indiana.edu:82/
- 25. Worm: http://www.expasy.ch/cgi-bin/lists?celegans.txt
- 26. Zebrafish: http://www.ncbi.nlm.nih.gov/genome/guide/D_rerio.html
- 27. Mouse: http://www.informatics.jax.org/

Semester – II Paper I - Chordates Course Code: VGVPSMZO201 Credits: 4

Unit	Content	Lecture
	Protochordates and Agnatha	
	I. Protochordates	
	i. Origin and ancestry of Protochordates, similarities and	
	differences with Invertebrates and Chordates	
	ii. Comparison of characteristics between subphyla	
	Urochordates and Cephalochordates	
	II. Urochordates	
	i. Life history of Herdmania and its phylogenetic affinities	
Unit I	III. Cephalochordates	15 Hrs
Unit I	i. General features and phylogenetic affinities	15 1115
	ii. Life history of Branchiostoma	
	IV. Ostracoderm	
	i. Salient features and biological significance	
	ii. Interrelationship and affinities with fish	
	V. Cyclostomes	
	i. Resemblance with Cephalochordates, Vertebrates and	
	differences from Fishes	
	ii. Life history of Petromyzon	
	Phylogeny of Chordates	
	I. Ancestry of Chordates	
	II. Pisces	
	i. General characters of Dipnoi and affinities with Fishes,	
	Elasmobranchs and Amphibia	
	ii. Origin of air bladder and its relationship with tetrapod	
Unit II	lungs	15 Hrs
	iii. Deep sea adaptations of fishes	
	iv. Origin of fins	
	III. Amphibia	
	i. Origin of Tetrapods	
	ii. Pedomorphosis	
	iii. Adaptive radiation in amphibians Lepospondyli and	

	Lissamphibia		
	IV. Reptilia		
	i. Origin of Reptiles and affinities with Amphibia		
	ii. Terrestrial adaptations in Reptiles		
	V. Aves		
	i. Origin of Birds and affinities with Reptiles		
	ii. Adaptive radiation in Birds – Ratitae (Flightless Birds)		
	and Carinatae (Flying Birds)		
	iii. Origin of Flight – Theory of Cursorial and Arboreal origin		
	VI. Mammalia		
	i. Origin of Mammals		
	ii. Phylogeny of terrestrial and aquatic mammals		
	Functional and Comparative Anatomy of Chordates		
	I. Comparative Anatomy of:		
	i. Chondrocranium		
	ii. Splanchnocranium		
	iii. Skull in different Vertebrates		
	II. Evolution and Comparative Anatomy of Excretory System of Chordates		
	i. Evolutionary development of Kidney - Archinephros, Pronephros,		
	Mesonephros, Metanephros		
Unit III	I III. Comparative Anatomy of Nervous System in Vertebrates		
	i. Brain		
	ii. Sense organs – Eyes and Ears		
	IV. Comparative Anatomy of Respiration		
	i. Gills, Skin and Lungs		
	V. Circulation: Heart and Aortic Arches		
	VI. Male and female reproductive and urinary ducts of Vertebrates		
	(Cyclostomes, Teleost, Elasmobranchs, Amphibia, Reptilia, Aves and		
	Mammalia)		
	Assorted Topics on Chordates		
	I. Retrogressive metamorphosis in Ascidians		
	II. Pisces - Evolutionary significance Crossopterygians, Placoderms, Migration,		
Unit IV	Lateral line sense organ and electric organs	15 Hrs	
0	III. Amphibia – Evolutionary significance of Labyrynthodonts	15 Hrs	
	IV. Reptilia - Evolutionary significance of Dinosaurs, Venom apparatus and biting		
	mechanism in snakes		
	V. Aves – Migration, Flight adaptations		

VI. Mammalia - Dentition in mammals, Habitat diversification, Walking gait:	
Plantigrade, Digitigrade and Unguligrade, Comparative account of Jaw suspension	
Total No. of Lectures	60

References based on Course 1 – Chordates (VGVPSMZO201)
1. Introduction to Genera Zoology, Volume II– K. K. Chaki, G. Kundu, S. Sarkar (NCBA)
2. Vertebrate Zoology– F. B. Mondal (Oxford IBH)
3. Modern TextBook of Vertebrates – R. L. Kotpal (Rastogi)
4. Alexander, R. M. The Chordata. Cambridge University Press, London.
5. Barrington, E. J. W. The biology of Hemichordata and protochordata. Oliver and Boyd, Edinborough.
6. Kingsley, J. S. Outlines of comparative autonomy of vertebrates. Central Book Depot, Allahabad.
7. Kent, C. G. Comparative anatomy of vertebrates.
8. Smith, H. S. Evolution of chordate structure. Hold Rinehartand Winstoin Inc., New York.
9. Torrey, T. W. Morphogenesis of vertebrates. John Wiley and Sons Inc., New York.
10.Romer, A. S. Vertebrate Body, III Ed. W. B. Saunders Co., Philadelphia
11. Young, J. Z., Life of mammals, The Oxford University Press, London
12.Colbert, E.H., Evolution of the vertebrates. John Wiley and Sons Inc., New York.
13.Weichert, C. K. and Presch, W. Elements of Chordate anatomy.4th Edn. McGraw Hill, Book Co., New
York.
14.Montagna, W. Comparative anatomy. John Wiley and Sons Inc.
15. Andrews, S. M. Problems in vertebrate evolution. Academic Press, New York.
16.Waterman, A. J. Chordata structure and function. Macmillan Co., New York.
17.Lovtrup, S. The phylogeny of Vertebrate. John Wiley & Sons, London
18. Barbiur, T. Reptiles and Amphibians: Their habits and adaptations. Hongton Miffin Co., New York.
19.Smyth. Amphibia and their ways. The Macmillan Co., New York.
20.Jordan and Verma. Chordate Zoology, S. Chand Publication.
• (C X O C) •
-

Paper II - Developmental Biology – II Course Code: VGVPSMZO202

Credits: 4

Unit	Content	Lecture
Unit I	Reproductive Systems in Chordates i. Reproductive system – Urochordata - Tunicate, Cephalochordata - Amphioxus, Cyclostomata – Petromyzon, Pisces – Catfish, Amphibia – Frog, Reptilia – Lizard, Aves – Pigeon, Mammalia – Human ii. Accessory Reproductive Glands – Human.	15 Hrs
Unit II	 Physiology of Reproduction Morphogenesis and organogenesis in animals: Cell aggregation and differentiation in Dictyostelium; axes and pattern formation in Drosophila, amphibia and chick; organogenesis, vulva formation in Caenorhabditis elegans; eye lens induction, limb development and regeneration in vertebrates; differentiation of neurons, post embryonic development-larval formation, metamorphosis; environmental regulation of normal development; sex determination. ii. Sperm capacitation, decapacitation – molecular mechanism and Ovarian luteinization and mammary gland differentiation in human iii. Pheromones – Pisces, Amphibia, Reptilia, Aves and Mammalia iv. Courtship behavior in – Pisces, Amphibia, Reptilia, Aves, Mammalia 	15 Hrs
Unit III	 Developmental Biology – i. Gametogenesis, fertilization and early development: Production of gametes, cell surface molecules in sperm-egg recognition in animals; embryo sac development; zygote formation, cleavage, blastula formation, embryonic fields, gastrulation and formation of germ layers in animals ii. Introduction to germ cells : Germ cell migration in Zebrafish, Frogs, Lizard, Chick and Mouse iii. Stem cells – Embryonic stem cells, Induced Pluripotent stem cells, Adult stem cells Regeneration Therapy – Cardiac, bone and neuronal regeneration Cryopreservation of stem cells – Concept, tools, techniques and application 	
Unit IV	 iv. Induced breeding in fish – technique and applications. Animal Development – i. Environmental Cues and Impact on Development - Predator Induced Polyphenism – Amphibian, Temperature and Sex – Fish, Turtle and Alligator ii. Teratogenesis - Alcohol, Retinoic acid, Endocrine disruptors – Diethylstilbestrol, Plastics – Nonylphenol, Bisphenol A and Heavy metals as teratogens viii. Developmental constraints on evolution – physical, morphogenetic and phyletic i. Modularity of development – Example – Duffy blood group substance and Stickleback fish iv. Aging and Senescence – Causes, Consequences, and Therapeutics i. Environmental and epigenetic causes of aging – Plastics, Pesticides, Heavy metals v. Promoting Longevity: Role of telomerase: an overview 	
	Total No. of Lectures	60

References based on Course 2 - Developmental Biology II (VGVPSMZO202)

1. Comparative embryology of the vertebrates 1 - 2 (1953) McGraw – Hill Book company, New York.

2. Comparative reproductive biology - HeideSchatter and Gheorghe Constantinescu -

Blackwell Publishing.

- 3. Human reproductive system Encyclopedia Britannica by Richard J. Harrison.
- 4. Animal Physiology Withers.
- 5. Animal Physiology Hoar
- 7. Gilbert, 9th Edition.
- 8. Animal Physiology Giese
- 9. Chordates- Jordan and Verma
- 10. Chordates- Parker and Haswell
- 11.Chick embryology- Patten
- 12.Chordate Zoology- Kotpal
- 13. Chordate Zoology-P. S. Dhami and J. K. Dham
- 14.Sex pheromones in amphibians-a review Vet.Med-Czech, 50,2005(9); 385-389
- 15. Developmental Biology- Gilbert

E-resources

- 15. http://www.eurekaselect.com/node/156190/related-ebooks
- 16. https://embryo.asu.edu/pages/sperm-capacitation
- 17. https://www.sciencedirect.com/book/9780124366435/handbook-of-stem-cells
- 18. https://ivf.net/ivf/a-textbook-of-in-vitro-fertilization-and-assisted-reproduction-the-

bournhall-guide-to-clinical-and-o418.html

- 19. https://www.britannica.com/science/teratogenesis
- 20. https://link.springer.com/chapter/10.1007/978-3-642-45532-2_15
- 21. https://www.elsevier.com/books/handbook-of-the-biology-of-aging/schneider/978-0-12-
- 627871-2
- 22. https://www.whatisepigenetics.com/fundamentals/

Semester – II Paper III - Biochemistry and Biotechnology Course Code: VGVPSMZO203 Credits: 4

Unit	Content	Lecture
	Fundamentals of Biochemistry	
	I. Water as the Basic Molecule of Life	
	i. Structure of atoms, molecules and chemical bonds	
	ii. Molecular structure and solvent properties of water, tetrahedral geometry,	
	hydrogen bond, thermal properties of water and their biological significance	
	iii. Ionization of water, Ion product of water (Kw), Concept of pH,	
	Dissociation of weak acids and weak bases, Henderson-Hasselbalch Equation,	
	Titration curves of strong and weak acids, concept of buffer, buffers in	
	biological systems	
	II. Biological Macromolecules	
	i. Central role of Carbon	
	ii. Common ring structure, Chirality, and Isomerization in biomolecules	
	iii. Composition, structure of monomers and polymers, functions of	
Unit I	carbohydrates, lipids, proteins, nucleic acids and vitamins	15 Hrs
	III. Interactions of Macromolecules	
	i. Stability of Proteins and Nucleic Acids; Stabilizing Interactions such as	
	Vander Waals, Electrostatic, Hydrogen Bonding, Hydrophobic Interactions	
	ii. Conformation of proteins: Ramachandran plot, secondary structure,	
	domains, motif and folds, hydropathy index of amino acids, isoelectric point	
	(pi) of proteins IV. Complex biomolecules	
	i. Glycoproteins: blood group determinants	
	ii. Complex Lipids: Phospholipids, Sphingolipids, Gangliosides, Sterols and	
	Waxes	
	iii. Lipoproteins: classification and functions of chylomicrons, VLDL, LDL,	
	HDL, and free fatty acid albumin complex.	
	I Dischamical Thormodynamics	
	I. Biochemical Thermodynamics	
	i. Laws of thermodynamics, free energy, entropy, enthalpy, exergonic and endergonic reactions	
	e	
	ii. Biological oxidation: Electron transport chain in mitochondria; oxidative	
	phosphorylation – mechanism, uncoupling of oxidative phosphorylation and	
	its significance	
Unit II	iii. Free radicals, Antioxidants and Antioxidant system	15 Hrs
	II. Carbohydrate and Lipid Metabolism	
	i. Glycolysis and its energetics	
	ii. Gluconeogenesis: Reaction sequence from pyruvate, gluconeogenesis from	
	amino acids, glycerol, propionate and lactate	
	iii. Glycogen metabolism: Glycogenesis, Glycogenolysis	
	iv. Significance of the pathways: Hexose Monophosphate (HMP) Shunt as a	
	multifunctional pathway; uronic acid pathway; glyoxalate cycle	

	v. Fatty acid metabolism: Oxidation of saturated even and odd carbon atom,				
	and unsaturated fatty acids, metabolism of cholesterol				
	III. Regulation of Metabolism				
	i. Regulation of metabolic flux by genetic mechanisms: Control of enzyme				
	synthesis, constitutive and inducible enzymes; induction and repression of				
	enzymes (lac operon and trp operon)				
	ii. Regulation of metabolism by extracellular signals: nutrient supply, nutrient				
	transport, endocrine control, neural control				
	IV. Amino acid and Nucleic acid Metabolism				
	i. Nitrogen metabolism: Protein turnover, amino acid pool, nitrogen balance				
	ii. Metabolism of Amino acids: Transamination, Deamination, Urea cycle				
	iii. Formation of amino acids from Pyruvate, TCA cycle intermediates,				
	Acetyl CoA iv. Nucleic Acid metabolism: De novo synthesis: synthesis of				
	purine and pyrimidine nucleotides; Salvage Pathway; Catabolism of purine				
	and pyrimidine nucleotides.				
	Organization of genome in prokaryotes and eukaryotes				
	i. C-value paradox and genome size.				
	ii. DNA replication in prokaryotes and eukaryotes				
	iii. Transcription and translation in prokaryotes & eukaryotes, Transcription level				
	control, Translational level control, post-translational control				
	Control of gene expression in Prokaryotes & Eukaryotes-				
.	i. Lac operon,	15 11			
Unit III	ii Trp operon	15 Hrs			
	iii. Small regulatory RNAs, small nuclear ribonucleoproteins (snRNPs)				
	iv. Gene silencing, miRNA, RNA silencing pathways and DNA methylation, RNA				
	processing				
	Methods in Biotechnology				
	Cloning using plasmid pUC18, pUC19, blue-white screening, cloning in				
	bacteriophage, cosmid, BAC and YAC vectors, Chromosome walking, RAPD,				
	AFLP, Microarrays				
	Applications of Biotechnology				
	I. Industrial Biotechnology				
	i. Microbial fermentation, Microbial growth kinetics, Design of a fermenter, Organisms used in large scale fermentation.				
	ii. Production of antibiotics – Cephalosporin, erythromycin; amino acids –				
	proline, glutamate; vitamins – cyanocobalamin, riboflavin; Aspartame and				
	Taxol				
	II. Medical Biotechnology:				
	Molecular approaches in diagnosis and treatment				
Unit IV	i. Peptide vaccines: synthetic drugs (engineered proteins)	15 Hrs			
	ii. Genetic immunization: Antisense DNA, Therapeutic ribozymes				
	iii. Anti-idiotypic vaccine for cancer treatment				
	iv. Monoclonal antibodies (mAbs) and their therapeutic applications				
	v. HIV therapeutic agents				
	vi. Production of biopharmaceuticals from transgenic animals – Human Tissue				
	Plasminogen Activator (hTPA) and α -1Antitrypsin (AAT)				
	vii. Pharmacogenomics and Nutrigenomics: An overview and applications				
	III. Agricultural Biotechnology				

biosynthetic pathway in golden rice iii. Genetic engineering of biological nitrogen fixation (Nitrogen as ecluster and hydrogenase genes), Genetic engineering drought/salinity tolerance trait in crops Total No. of Lectures	60
 i. Plant Tissue culture methods–Broad outline and applications of Pollen culture & Protoplast culture ii. <i>Bacillus thuringiensis</i> based bio-pesticides, genetic engineering of herbicide resistance trait in crops, genetic engineering of β-carotene biosynthetic pathway in golden rice 	

References based on Course 2 - Biochemistry And Biotechnology (VGVPSMZO203) 1. Puri, Dinesh (2014). Textbook of Medical Biochemistry (3rd Edition). 2. Bhagavan N. V. and Chung-Eun Ha (2015). Essentials of Medical Biochemistry (2nd Edition). 3. Harper's Illustrated Biochemistry. 4. Satyanarayana U. and Chakrapani (2014). Biochemistry. 5. Outlines of Biochemistry, (5th Edition) – 2006 – Eric E. Conn, Paul K. Stumpf, Georg Bruening. 6. Lehninger, L. Albert, David, L. Nelson, Michael, M. Cox (1993). Principles of Biochemistry, CBS Publishers and Distributors, Delhi. 7. Stryer, L (1988), Biochemistry, W.H. Freeman and Company, New York. 8. Cooper, T. G (1977), The Tools of Biochemistry, Wiley Interscience Publication, John Wiley and Sons, New York. 9. Smith (1983), Principles of Biochemistry, (7th Edition), Mc Graw Hill (Mammalian Biochemistry), New York. 10. Voet, D. & Voet, J (1995), Biochemistry, John Wiley and Sons, New York. 11. Basic Concepts in Biochemistry – Hiram F Gilbert – McGraw Hill Publications. 12. Fundamentals of Biochemistry – J L Jain, Sunjay Jain, Nitin Jain – S. Chand. 13. Molecular Biology of the Cell – Alberts et al., - Garland Science. 14. Molecular Biology of the Gene – Watson et al., Benjamin Publications. 15. Genes VIII - Benjamin Lewin - Oxford Press. 16. Molecular Biology – Freifelder – Narosa Publication House. Biotechnology 17. Molecular Cell Biology (5th Edition) – Lodish, Berk, Matsudaira, Kaiser, Krieger, Scott, Zipursky, Darnell – WH Freeman. 18. Cell & Molecular Biology: Concepts & Experiments (6th Edition) – Gerald Karp. 19. iGenetics - A molecular approach (3rdEdition) - Peter J Russell - Pearson Education Inc. 20. Molecular Biotechnology – Principles and applications of recombinant DNA (3rd Edition) Bernard R Glick & Jack J Pasternak – ASM Press. 21. Principles of Fermentation Technology (2nd Edition) – Peter F Stanbury, Allan Whitaker,

Stephen J Hall – Elsevier Publications.

22. Basic Biotechnology (3rd Edition) – Colin Ratledge & Bjorn Kristiansen – Cambridge

University Press.

23. Medical Biotechnology – S. N. Jogdand – Himalaya Publishing House.

24. Microbial Biotechnology (2nd Edition) – Alexander Glazer & Hiroshi Nikaido – Cambridge University Press.

25. Plant Tissue Culture: Theory and Practice – S. S. Bhojwani & M. K. Razdan – Elsevier.

26. Molecular Biology and Biotechnology- KG Ramawat & Shaily Goyal - S. Chand.

27.Aspartame Information Center.www.aspartame.org

28. Genetic engineering of taxol biosynthetic genes in Saccharomyces cerevisiae. a. Biotechnology and

Bioengineering 93(2): 212-24 • February 2006

29. Textbook of Biotechnology – H K Das – Wiley India Publication.

E-resources

30. The Golden Rice Project http://www.goldenrice.org/

Practicals based on Course 1 – Chordates + Developmental biology II (VGVPSMZOP201)		
Sr No.	List of Experiments	
	Museum specimens / Photographs / Pictures / Slides:	
	i. Protochordates: Study of Doliolum, Herdmania, Ascidia, Botryllus	
1	ii. Adaptive radiation in Reptiles-Turtles, Crocodile, Tuatara, Snakes and Lizards	
	iii. Adaptive radiation in Mammals – Talpa (mole), Tarsius, Armadillo, Camel and	
	Sperm whale	
2	Comparative anatomy of digestive system in vertebrates	
3	Comparative study of Pelvic and Pectoral girdle in vertebrates	
4	Types of jaw suspension in vertebrates- Autodiastylic, Holostylic, Amphistylic and Autostylic.	
_	Types of vertebrae – Acoelous, Procoelus, Opisthocoelus, Amphicoelus, Amphiplatins,	
5	Heterocoelus, Axis and atlas vertebrae	
	Pigeon – Study / Virtual dissection of	
6	i. Flight muscles, ii. Digestive system, iii. Respiratory system, iv. Circulatory system	
	v. Excretory system	
7	Field visit to national Park / Sanctuary / Museum / Zoo or any other suitable ecosystem	
1	to study vertebrates.	
8	Identification of fish developmental stages-egg, larva, juvenile (fry, fingerling and adult).	
9	Measurement of fish ova diameter using an Oculometer.	
10	Study of metamorphosis in Amphibia.	
11	Histology of male and female accessory reproductive glands – Human – Prostate gland,	
11	Bulbourethral gland and placenta [Permanent slides]	
12	Study of stem cells from chick embryos – staining and identification of cells.	
13	Quantitative estimation of proteins from the given sample using Bradford method.	
14	Determination of glucose by Benedict's quantitative reagent (Titrimetric method)	
15	Isolation and determination of glycogen in the given tissue (liver / skeletal muscle /	
15	kidney) by Anthrone method.	
16	Restriction digestion of the given DNA sample and separation of the fragments by	
10	agarose gel electrophoresis	
17	Southern blotting technique (assembly of the sandwich/ mechanical blotting).	

Semester – II OE - Instrumentation & Biophysics Course Code: VGVPSELZO201

Credits: 4

Unit		Credits: 4 Content	Lecture
	. .		
Unit I	Instr I.	umentation - I Centrifugation	15 Hrs
	1.	i. Basic Principles of sedimentation	
		ii. Types, Care & Safety aspects of centrifuge	
		iii. Preparative centrifugation	
		iv. Analytical centrifugation	
	II.	Microscopy:	
		i. The light microscope	
		ii. Optical sectioning	
		iii. Imaging living cells and tissues	
		iv. Measuring cellular dynamics	
		v. The electron microscope (EM)	
		vi. Image archiving	
	III.	Mass Spectrometric Techniques:	
		i. Ionization	
		ii. Mass analysers and Detectors	
		iii. Structural information by tandem mass spectrometry	
		iv. Analyzing protein complexes	
		v. Computing and database analysis	
	IV.	Electrophoretic techniques	
		i. General principles	
		ii. Electrophoresis of proteins	
		iii. Electrophoresis of nucleic acids	
		iv. Capillary electrophoresis	
		v. Microchip electrophoresis	
Unit II	Instr	rumentation - II	15 Hrs
	I.	Chromatographic techniques	
		i. Principles of chromatography	
		ii. High-performance liquid chromatography	
		iii. Adsorption chromatography	
		iv. Partition chromatography	
		v. Ion-exchange chromatography	
		vi. Gas chromatography	

	II.	Spectroscopic techniques: I	
		i. Ultraviolet and visible light spectroscopy	
		ii. Fluorescence spectroscopy	
		iii. Luminometry	
		iv. Circular dichroism spectroscopy	
		v. Light scattering	
		vi. Atomic spectroscopy	
	III.	Spectroscopic techniques: II	
		i. Infrared and Raman spectroscopy	
		ii. Surface plasmon resonance	
		iii. Electron paramagnetic resonance	
		iv. Nuclear magnetic resonance	
		v. X-ray diffraction	
		vi. Small-angle scattering	
	IV.	Radioisotope techniques	
		i. The nature of radioactivity	
		ii. Detection and measurement of radioactivity	
		iii. Other practical aspects of counting of radioactivity and analysis of data	
		iv. Safety aspects	
Unit III	Biopł	nysics - I	15 Hrs
	I.	Physico-chemical Techniques to study biomolecules	
		i. Hydration of macromolecules	
		ii. Role of friction	
		iii. Diffusion	
		iii. Diffusion iv. Sedimentation	
		iv. Sedimentation	
		iv. Sedimentation v. Ultracentrifuge	
		iv. Sedimentation v. Ultracentrifuge vi. Viscosity	
		 iv. Sedimentation v. Ultracentrifuge vi. Viscosity vii. Rotational Diffusion - Flow birefringence measurement and electric 	
		 iv. Sedimentation v. Ultracentrifuge vi. Viscosity vii. Rotational Diffusion - Flow birefringence measurement and electric birefringence 	
	П.	 iv. Sedimentation v. Ultracentrifuge vi. Viscosity vii. Rotational Diffusion - Flow birefringence measurement and electric birefringence viii. Light Scattering 	
	П.	 iv. Sedimentation v. Ultracentrifuge vi. Viscosity vii. Rotational Diffusion - Flow birefringence measurement and electric birefringence viii. Light Scattering ix. Small angle X-ray scattering 	
	II.	 iv. Sedimentation v. Ultracentrifuge vi. Viscosity vii. Rotational Diffusion - Flow birefringence measurement and electric birefringence viii. Light Scattering ix. Small angle X-ray scattering Molecular Modeling 	
	П.	 iv. Sedimentation v. Ultracentrifuge vi. Viscosity vii. Rotational Diffusion - Flow birefringence measurement and electric birefringence viii. Light Scattering ix. Small angle X-ray scattering Molecular Modeling i. Generating the model 	
	II.	 iv. Sedimentation v. Ultracentrifuge vi. Viscosity vii. Rotational Diffusion - Flow birefringence measurement and electric birefringence viii. Light Scattering ix. Small angle X-ray scattering Molecular Modeling i. Generating the model ii. Building the structure of H2O2 	

	III.	Signal Transduction	
		i. Mode of Transport	
	137	ii. Signal Transduction in cell	
	IV.	Physical aspects of Hearing	
		i. Ear	
		ii. Elementary acoustics	
	Diaml	iii. Theories of hearing	15 II
Unit IV	_	nysics - II	15 Hrs
	I.	Biomechanics of muscular system	
		i. Striated muscles	
		ii. Contractile Proteins	
		ii. Mechanical Properties of Musclesiii. Contraction mechanism	
	п	iv. Role of Calcium ions	
	II.	Biomechanics of cardiovascular system	
		i. Blood pressure	
		ii. Electrical activity during heartbeatiii. Electrocardiography	
		iv. Duplicate Publications	
		v. Suggesting bogus reviewers	
	III.	Neurobiophysics	
	111.	i. Synapse	
		ii. Physics of membrane potential	
		iii. Membrane potential due to diffusion	
		iv. Voltage clamp	
	IV.	Sensory Mechanisms - The Eye	
	1	i. The visual receptors	
		ii. Electrical activity and visual generator potential	
		ii. Optical Defects of the eye	
		iii. Neural Aspect of vision	
		iv. Visual Communications, Bioluminescence	
	1		1

References based on OE- Instrumentation and Biophysics (VGVPSELZO201)

1. Wilson, K. and Walker, J. (2010) Principles and Techniques of Biochemistry and Molecular Biology. Cambridge University Press, Cambridge

2. Modern experimental biochemistry, second edition by Rodney F Boyer. Benjamin-Cummings Publishing, Redwood City, CA. 1993

3. Plummer, M.U. and Plummer, D.T. (1988) Introduction to Practical Biochemistry. Tata McGraw-Hill Education, Noida.

4. Vasanta Pattabhi and N Gautam. Biophysics. 2002. Kluwer academic publishers, Dordrescht

5. Paata J. Kervalishvili. Applied Biophysics. Georgian Technical University. Tbilisi 2021

OE - Diversity of life forms & Applied zoology Course Code: VGVPSELZO202 Credits: 4

Unit		Content	Lecture
Unit I	Dive	rsity of life forms	15 Hrs
	I.	Principles & methods of taxonomy: Concepts of species and hierarchical taxa,	
		biological nomenclature, classical & quantitative methods of taxonomy of	
		plants, animals and microorganisms.	
	II.	Levels of structural organization: Unicellular, colonial and multicellular	
		forms. Levels of organization of tissues, organs & systems. Comparative	
		anatomy, adaptive radiation, adaptive modifications.	
	III.	Outline classification of plants, animals & microorganisms: Important criteria	
		used for classification in each taxon. Classification of plants, animals and	
		microorganisms. Evolutionary relationships among taxa.	
	IV.	Natural history of Indian subcontinent: Major habitat types of the	
		subcontinent, geographic origins and migrations of species. Common Indian	
		mammals, birds. Seasonality and phenology of the subcontinent.	
	V.	Organisms of health & agricultural importance: Common parasites and	
		pathogens of humans, domestic animals and crops.	
	VI.	Organisms of conservation concern: Rare, endangered species. Conservation	
		strategies.	
Unit II	Appl	ied Marine Zoology	15 Hrs
	I.	Biochemical composition of raw and preserved fish.	
	II.	Fish protein concentrate, fish maws, isinglass, oils (body and liver), chitin,	
		chitosan, Fish/ Prawn pickle and chutney, fish wafers, surimi, imitation	
		products.	
	III.	Bioactive Compounds	
		a) Sea as treasure house of new chemicals	
		b) Bioactive metabolites from sponges and bacteria	
		c) Bioactive toxins and eutrophication	
	IV.	Commercial uses of seaweeds	
		a) Uses of seaweeds as food: Nori (Porphyra), Kombu (Laminaria), Arame	
		(Eisenia), Dulse (Palmaria)	
		b) Liquid Seaweed Fertilizer	
		c) Seaweed as source of Biofuel	
		d) Seaweed in cosmetics	

	V.	Methods of evaluating freshness and quality of fish and prawn (Organoleptic,	
		Microbial and Chemical)	
	VI.	Mechanisms of spoilage (Hyperemia, rigor mortis, Autolysis, Rancidity)	
	VII.	Methods of preservation-Icing, Drying, Salting, Canning, Pickling, Freezing	
Unit III	Applied Zoology - I		15 Hrs
	I.	Apiculture, sericulture, lac culture, carp culture, pearl culture, prawn culture, vermiculture.	
	II.	Major infectious and communicable diseases (malaria, filaria, tuberculosis, cholera and AIDS) their vectors, pathogens and prevention.	
	III.	Cattle and livestock diseases, their pathogens (helminthes) and vectors (ticks, mites, Tabanus, Stomoxys).	
	IV.	Pests of sugarcane (Pyrilla perpusiella) oil seed (Achaea janata) and rice	
		(Sitophilus oryzae).	
	V.	Human genetic disease and genetic counseling.	
Unit IV	Applied Zoology - II		15 Hrs
	II.	Microbial fermentation and production of small and macromolecules.	
	III.	Application of immunological principles, vaccines, diagnostics. Tissue and cell culture methods for animals.	
	IV.	Transgenic animals, molecular approaches to diagnosis and strain identification.	
	V.	Genomics and its application to health and agriculture, including gene therapy.	
	VI.	Bioresources and uses of biodiversity.	
	VII.	Breeding in plants and animals, including marker – assisted selection.	
		Total No. of Lectures	60

References based on Diversity of Life Forms & Applied Zoology

1. Verma, P.S., Agarwal, V.K. (1999). Cell biology genetics molecular biology evolution and ecology . New Delhi: S.Chand Co.(pvt) Ltd..

2. Jordan EL & Verma PS. Invertebrate Zoology. S Chand Publications, New Delhi

3. Jordan EL & Verma PS. Chordate Zoology. S Chand Publications, New Delhi

4. Lal P. Indica: A Deep Natural History of the Indian Subcontinent. Penguin Random House India; Illustrated edition (7 December 2016)

5. Marketing Management – Philip Kotler.

6. Operations Research Theory and Application, Third edition, Sharma J. K.: Macmillan

India Ltd.

7. Pollution and Toxicology, Venugopalan, V.K.: CAS in Marine Biology.

8. Prawn and Prawn Fisheries – Kurian & Sebestian.

9. Textbook of Marine Pollution - Prakesh P.

10.The Oceans – Svedrup, H.V. et al, Asian Publishing House.

11. Molecular biotechnology : principles and applications of recombinant DNA. Bernard R. Glick and Jack

J. Pasternak, Cheryl L. Patten. 4th ed. United State

12. Biotechnology - B. D. Singh, Kalyani Publishers

Practicals based on OE (VGVPSELZOP201)			
Sr. No.	List of Experiments		
1	Separation of amino acids by 2D Paper chromatography		
-			
2	Separation of pigments by column chromatography		
3	To determine viscosity of a given tissue fluid using Ostwald's Viscometer		
4	Separation of proteins by SDS-PAGE from the given sample.		
5	Construct a phylogenetic tree from the given data		
6	Identify the animal and comment on its conservation status		
7	Extraction of collagen from fish scales		
8	Interpretation of Electrocardiogram (ECG) and associated abnormalities.		
9	Preparation of prawns pickle		
10	Evaluate the fish quality by organoleptic method		
11	Extraction and quantification of total lipids from seaweeds.		
12	Pedigree analysis of genetic disorders		

